Esoteric Library - The Concentric Equant Model of Aryabhata
Esoteric Library

-- 2925 articles here --

Search our entire article base

Esoteric Dictionary Definitions
Search our dictionary.

Article Count

Return to our index page
Review all comments made by readers on articles, in the library
Get notified when there are new articles in a category of interest
Search our complete article base for all your answer
Contact Esoteric Library
Help Esoteric Library
About Pieter Heydenrych
Some Causes worth considering
Return to our Dictionary index page
Create your own author account, and submit articles free

Category : Vedic Astrology - - - - Previous Page

--> Notify Me when there is an article of interest in a specific category FREE <--

The Concentric Equant Model of Aryabhata

{written by : G Kumar }

Article word count : 685 -- Article Id : 3350
Article active date : 2011-11-19 -- Article views : 9122

Link to this article
Esoteric Library Publishers
Send to a friend
Add to Favourites
Print Article
Notify me of new articles in this category

Rate this article

Current rating : 2.11
Why rate an article?
Putting down your mark helps us to ensure that we are able to get the best to everyone. So please help others to help yourself.

To vote, click on the star of your choice.

Article is about :
About Astronomy, the Science of the Heavens and Mathematics, the science of Magnitude. Both play a big role in the Wisdom of the Heavens, which is Astrology

Reincarnation The Neverending Journey
In Reincarnation The Neverending Journey an attempt is made to explore the conundrum of our existence. An existence that spans yesterday, today and even tomorrow. Questions surrounding the existence of the soul and our connections to the physical world, the fundamental mechanisms and the processes by which reincarnation operates through time, are carefully examined. Plausible revelations on memories and karma and their intrinsic connections to our lives today and tomorrow are explored. It is a Neverending Journey.. Your Neverending Journey....

by Pieter Heydenrych

Search our entire article base

Esoteric Dictionary Definitions
Search our dictionary.

Custom Search

Aryabhata developed a Concentric Equant Model, in the sixth century. The Sun moves on a circle of radius R, called a deferent, whose center is the Observer on Earth. The distance between the Earth and the Sun, the Ravi Manda Karna, is constant. The motion of the Sun is uniform from a mathematical point, called the " Equant", which is located at a distance R x e from the observer in the direction of the Apogee ( e = eccentricity ). All Indian computations are based on this Concentric Equal Model.

The normal equation for computing the Manda Anomaly is R e Sin M and resembles the Kepler Equation, M = E - e Sin E. The Concentric Equant theory was developed by the Indian astronomer, Munjala ( circa 930 CE ). The Geocentric theory of the ancient astronomers had the ability to produce true Zodiacal Longitudes for the Moon. But the perturbations of the Moon were so complex, that the early Indian and Greek astronomers had to give birth to complicated theories.

The simplest model is a concentric Equant Model to compute the lunar true longitude. In the above diagram M = Moon O = Observer Eo = Equant , located at a distance r from the observer , drawn on the Line of Apsis and the Apogee. A = Apogee, Luna"s nearest point to Earth Angle Alpha = Angle between Position and Apogee Angle q1 = Equation of Center . Angle subtended at Luna between Observer and Equant Equation in Astronomy = The angle between true and mean positions.

The Physics Professor of Florida State University, Dennis Duke remarks "The planetary models of ancient Indian mathematical astronomy are described in several texts. These texts invariably give algorithms for computing mean and true longitudes of the planets, but are completely devoid of any material that would inform us of the origin of the models. One way to approach the problem is to compare the predictions of the Indian models with the predictions from other models that do have, at least in part, a known historical background.

Since the Indian models compute true longitudes by adding corrections to mean longitudes, the obvious choices for these latter models are those from the Greco-Roman world. In order to investigate if there is any connection between Greek and Indian models, we should therefore focus on the oldest Indian texts that contain fully described, and therefore securely computable, models. We shall see that the mathematical basis of the Indian models is the equant model found in the Almagest, and furthermore, that analysis of the level of development of Indian astronomy contemporary to their planetary schemes strongly suggests, but does not rigorously prove, that the planetary bisected equant model is pre-Ptolemaic.

 " The mutli step algorithms of Indian Astronomy never approximated any Greek geometrical model. Ptolemy"s Almagest was the first book, according to Western Astronomy. We have now the information that Ptolemy did not invent the equant. Bhaskara II was an astronomer-mathematician par excellence and his magnum opus, theSiddhanta Siromani (" Crown of Astronomical Treatises") , is a treatise on Astronomy and Mathematics. His book deals with arithemetic, algebra, computation of celestial longitudes of planets and spheres. His work on Kalana ( Calculus ) predates Liebniz and Newton by half a millenium.

The Siddanta Siromani is divided into four parts 1)The Lilavati - ( Arithmetic ) wherein Bhaskara gives proof of c^2 = a^ + b^2. The solutions to cubic, quadratic and quartic indeterminate equations are explained. 2)The Bijaganitha ( Algebra )- Properties of Zero, estimation of Pi, Kuttaka ( indeterminate equations ), integral solutions etc are explained. 3)The Grahaganitha ( Mathematics of the planets ). For both Epicycles The Manda Argument , Mean Longitude of Planet - Aphelion = Manda Anomaly The Sheegra Argument, Ecliptic Longitude - Long of Sun = Sheegra Anomaly and the computations from there on are explained in detail. 4)The Gola Adhyaya ( Maths of the spheres )

Bhaskara is known for in the discovery of the principles of Differential Calculus and its application to astronomical problems and computations. While Newton and Liebniz had been credited with Differential Calculus, there is strong evidence to suggest that Bhaskara was the pioneer in some of the principles of differential calculus. He was the first to conceive the differential coefficient and differential calculus.

Author Bio :
Article by G Kumar, astrologer, writer and programmer of He give free tips at

Add a comment to this article
Number of comments for this article : 0
View all comments to this article
View all comments in the Comments Blog

Other reads from the same category

Vedic Astrology Lesson IX {by G Kumar }
Vedic Astrology - Part II {by G Kumar }
Vedic Astrology Lesson V {by G Kumar }
Vedic Astrology Lesson VI {by G Kumar }
The Vedic Astro Calender {by G Kumar }
Bridal Mysticism {by G Kumar }
Adverse Jupiter hits Stock Markets; creates Food Crisis ! {by G Kumar }
Vedic Astrology Part IV {by G Kumar }
Astrology is a Personality Analysis tool ! {by G Kumar }
Vedic Astrology - Lesson XXXIII {by G Kumar }
Other reads by G Kumar

The Rainy solar Transits or Njattuvelas
Stock Market Astrology Part VI
Sai and I are Both Being and Awareness !
Transit of Jupiter through Aquarius
Vedic Astrology Lesson 41 - Mathematical Astrology IV
Jupiter , the divine planet of Wisdom
Commodities Astrology
The Venusian Law ( Shukra Neeti )
An Octet to the Nourishing Mother
An Octet to the Nourishing Mother !

This Page is Sponsored by : From A Blimp To A Racecar